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In this paper, a tiny near-resonance periodic signal is used to stabilize the less stable state under perturbation.
Under the action of this external signal, the basin of the period-3 state is extended greatly. Joint use of signal
and noise can enhance the stabilization effectiveness of the periodic signal. The sensitive dependence of the
effectiveness on signal frequency shows that this stabilization may be due to a certain resonancelike behavior.
Numerical calculations also show that the shape of the signal is not an essential factor in our method. This
allows a free selection of the applied signal. The method is suitable for driving the system to the less stable
state of a pair of coexisting states.@S1063-651X~96!50312-0#

PACS number~s!: 05.45.1b

Multiple stability ~i.e., the coexistence of two or more
stable states! is a fundamental property of nonlinear systems
@1–6#. This means that an ensemble of identical systems
starting from different phase points will not be synchronous
finally. For a system with a fractal basin boundary, the com-
plex intertwisting of basins makes the final state’s depen-
dence on the initial condition very sensitive@3–6#. In this
case the prediction of final states is very difficult. For a mul-
tiple periodic state, the domains of phase difference make the
prediction still more complex. In applications such as laser
arrays and Josephson junctions, a collection of nearly iden-
tical systems with weak coupling is often desired, however,
to evolve in synchronism. Pecora and Carroll first noted this
problem@1#. They focused their attention on driving systems
starting from points in different domains of a multiple peri-
odic state to be in phase. They added apseudoperiodicsig-
nal, which is a chaotic or random signal with some periodic
character, instead of the original periodic driving. This
method can make almost all orbits starting everywhere in
phase. But this method will influence the system parametri-
cally and preparation of the signal is too complex. Recently,
Yang and co-workers gave a more flexible approach where
random noise was used to drive phase points into synchro-
nism @2#. Despite its simplicity, the method is limited in final
state selection since the random noise can only suppress the
state less stable under the action of a perturbation. In this
paper we show that by adding a tiny near-resonance periodic
signal to the system studied, any starting phase point can be
driven to a desired attractor, which can be more or less stable
under perturbation. Joint use of a periodic signal and a ran-
dom noise is more effective. Our approach is as simple as
Yang’s and as effective as Pecora’s.

The system we studied is the driven Duffing equation@2#:
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where f s(t) is a tiny near-resonance periodic signal and

f n(t) represents the effect of a random forcing. Throughout
this paper, we specifically assume thatf n(t) takes the form
f n(t)5Anh(t), whereh(t) is a Gaussian white noise with
^h(t)&50 and ^h(t)h(t8)&5d(t2t8). Unless pointed out
specifically, the signalf s(t) is chosen to be of the form
f s(t)5Assin(vt1f). For each initial point, we evolve Eq.
~1! for 100T5200p units of time,T52p being the period
of the driving, and then reduce the value ofan andas lin-
early to zero for another 50T. All the discussions throughout
this paper are based on this point.

For f s(t)5 f n(t)50, a50.15, andb50.21, Eq.~1! ex-
hibits three coexisting attractors, of period 1, 2, and 3, re-
spectively. Figure 1 shows a part of the intersection of three
basins with the phase planet ~mod2p!50. A uniform grid
of 50350 initial conditions in the rectangle defined by
20.6,x,0.6 and20.2,dx/dt,0.2 in the phase plane

FIG. 1. Part of the basins in the surface of section
t (mod2p)50. It is constructed by starting from 50350 points
uniformly distributed in the rectangle defined by20.6
,x,0.6,20.2,dx/dt,0.2. Parameters area50.15, b50.21,
An50, andAs50. Points evolving to the period 1 and 2 attractor
are denoted bys and* , respectively. The rest blank region is the
basin of the period-3 state.
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(x,dx/dt,t50) is used to construct this figure. The points
evolving to the period 1 and 2 state are denoted bys and* ,
respectively. The remaining blank region is the basin of the
period-3 state. For the fractal intertwisting of the three attrac-
tors’ basin, the final state sensitively depends on the phase
points where the system starts initially. Furthermore, the us-
ing of a random noise can only drive the system to the state
more stable under perturbation. The problem of how to drive
the system to the period-3 state, which is unstable under
perturbation, is still an open question.

Considering that the most stable state of the original sys-
tem is of identical period to the driving signal, maybe an
additional period-3 driving signal can stabilize the period-3
state of the original system. The results of numerical experi-
ment are given below to illustrate this idea.

ForAn50.0,v50.3333, andf50.5, the effectiveness of
the period-3 signal is shown in Fig. 2. It can be seen that
with an increase of amplitudeAs of the periodic signal, the
fraction of the population of points evolving to the period-3
attractor increases. At aboutAs50.02, nearly all of the
points have been driven to the desired state. But with further
increase ofAs , the number of points to the period-3 attractor
decreases. These results confirm that the period-3 signal can
really stabilize the period-3 state of the original system. It
should be pointed out that the role of the periodic signal here
is much different from that in@2#. The signal in that case
only destroys the interchange symmetry of the period-m at-
tractor’sm domains. But it has no influence on the structure
of phase space, in other words, no deformation of the attrac-
tor basins or their boundary. It only causes the points origi-
nally evolving to different domains of a certain multiple pe-
riod attractor to be in phase. But the number of the points
flowing to different attractors is not changed. In our case, the
periodic signal has largely extended the basin of the desired
attractor~see Fig. 3! and can drive almost all of the points to
the desired state. Also the strength of the applied signal in
our case is larger than that in@2#.

Considering that use of random noise alone will drive
phase points escaping from the period-3 attractor, the result
in Fig. 4 is more amazing. Parameters arew50.3333,
f50.5, and As50.08 here. The horizontal axis is the
strength of noise while the vertical axis is the fraction of

points evolving to the period-3 state. With the increasing of
An , more and more points flow to the period-3 state. It
means that the combined use of a random noise and a peri-
odic signal can enhance the effectiveness of stabilization.
And the effectiveness will reach a maximum value at a cer-
tain noise strength. This single peak response behavior is just
like the stochastic resonance effect.

To test the frequency dependence of our approach, signals
of frequencies different from 0.3333 are also applied. Figure
5 shows the numerical results. The vertical axis is the frac-
tion of points evolving to the period-3 attractor, the horizon-
tal axis is the frequency of applied signal. The strengths of
the signal and the noise areAs50.01 and An50.006,
respectively/ When the external signal is of frequency near
1/3, the output is greatly enhanced. With the deviation from
1/3, the output decreases quickly. This sensitive dependence
of the output on signal frequency implies that the stabiliza-
tion of the period-3 state may be a certain resonance behav-
ior.

To show that this method does not depend on the shape of
the signal used, signals with different shapes are applied to
our system. For signals of the form

FIG. 2. The fraction of points evolving to the period-3 state vs
the increasing of external periodic signal strength. The strength of
noise isAn50. A uniform grid of 30330 points is used to construct
this figure.

FIG. 3. The basins of each attractor for the system driven by the
period-3 signal of strengthAs50.01. The symbols and other param-
eters are the same as Fig. 1.

FIG. 4. The fraction of points evolving to the period-3 state vs
the increasing of the noise strength. Here the strength of periodic
signalAs50.008. A uniform grid of 30330 points is used to con-
struct this figure.
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f s~ t !5H As 2p<vt1f~mod2p!,0

2As 0<vt1f~mod2p!,p ~2!

and

f s~ t !5H As2
2As

p
~vt1f! 2p<vt1f~mod2p!,0

As1
2As

p
~vt1f! 0<vt1f~mod2p!,p,

~3!

results similar to Fig. 2 are obtained. So we can say that the
most essential character of the applied signal is its frequency.
Its shape has no essential influence on the results. This non-
essential dependence on the signal shape makes its selection
more freely. That is important for practical applications.

From above it can be seen that the problem here is some-
what similar to the well known effect ‘‘stochastic reso-
nance’’ ~ST! @7#. The combined use of noise and periodic
signal can enhance the effectiveness of the stabilization. And
the effectiveness is dependent on the frequency of the peri-
odic signal. But the two problems have some essential dif-
ferences. First, the system studied in this paper has its natural
frequency~1, 1/2, 1/3 for the three attractors, respectively!
without the influence of the external signals~including noise
and the periodic signal!. But the system in ST has no natural
frequency without the external signals. Second, ST is the
transformation of energy from noise to signal. It is the be-
havior of a single system. While the problem here is the
transformation of population of phase points from one state
to another state, it is the behavior of an ensemble of identical
systems. Third, in this paper, the discussions are based on the
withdrawal of the external signals after a long enough period
of stimulation, while for ST the noise remains for a time as
long as the system is operating. For these reasons, we tend to
say that the problem here is different from ST.

In Ref. @1#, Pecora and Carroll have discussed the prob-
lem of driving systems starting from initial points in a dif-
ferent domain of a multiple periodic system in phase. And
they have shown that the loss of domains comes about from

a crisislike behavior. While there is still no explanation about
the suppressing of multiple basins, here attempts are made to
shed light on this problem for the special case in this paper.
~It should be noted that the external signals are withdrawn
after a long enough period of time operating.! Figures 6~a!
and 6~b! show two orbits starting from different initial points
in the surface of sectiont (mod2p!50. The original sys-
tem’s attractors and their basins are also shown here. The
parameters areAn50.0,As50.06. Orbits shown in Figs. 6~a!
and 6~b! are two typical orbits of the system under driving of
the external periodic signal. Both of them start from the ba-
sin of the original system’s period-2 state@8#. In Fig. 6~a!,
with the action of the external periodic signal, the orbit flows
out basin II and evolves to a new appeared attractor. This
new attractor is also of period 3, but is slightly different from
the original period-3 state. During the linear reduction of
external driving, the new attractor loses its stability and the
system wanders in basin III. But after the withdrawal of the
external signal, it quickly evolves to the period-3 state of the
original system. In Fig. 6~b!, the orbit under the driving of
the external signal is still in basin II, but its behavior has
some random character. After the withdrawal of the external
signal, it flows to the original period-2 state. Calculations for
other initial points show that the new period-3 attractor is

FIG. 5. The fraction of the points flowing to the period-3 state
vs the frequency of the applied periodic signal. The strength of
noiseAn50. A uniform grid of 30330 points is used to construct
this figure.

FIG. 6. ~a! The typical orbit being attracted to the period-3 state
under the external periodic signal which is starting from the basin
of the period-2 state. Only one of every three crossing points of the
orbit in plane t (mod2p!50 is plotted. The period 2 and 3 states
of the original system are denoted byd and! respectively.~b! The
orbit starting from the basin of the period-2 state is still there under
the driving of the external period-3 signal. Others are the same as
in ~a!.
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stable. From the above numerical results, it can be seen that
the mechanism here is not like that for the domain loss in
Ref. @1#. There the crisis, or the collision of orbits, that are in
different domains of a certain multiple periodic state with an
unstable periodic orbit that separates them, causes these or-
bits to cross the domain boundary and merge into a single
one. In our case, the system under driving is still multiple
stable, but a new period-3 stable attractor appears. It lies in
the original basin of the desired state and has a bigger basin
than that of the desired state without external signals. After a
long period action of the external signal, a lot of points will
be attracted to that new attractor. Since the new attractor lies
in the original basin of the desired state, after the withdrawal
of the external signal these points attracted to this new at-
tractor will flow to the desired state.

In conclusion, we have shown that with the external
driving of a period-3 signal, the perturbation unstable
period-3 state can be stabilized. Its basin can be extended
greatly. With the joint use of a random noise and a periodic
signal, the effectiveness of stabilization can be enhanced.
The sensitive dependence on the signal frequency shows
that this effect may be due to a certain resonance behavior.
The complete understanding of this stabilization might
need the systematic investigation of the two-frequency sys-
tem @9#.
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